Clinical Commentary

The Friesian horse breed: A clinical challenge to the equine veterinarian?

S. Boerma, W. Back†‡ and M. M. Sloet van Oldruitenborgh-Oosterbaan*†

Equine Clinic Garijp, Garijp, The Netherlands; †Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and ‡Department of Surgery and Anaesthesiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Keywords: horse; Friesian; genetic trait; dwarfism; insect bite hypersensitivity; hoof cartilage ossification

Summary

The Friesian horse breed is a beautiful breed for showing, riding and driving. However, some clinical problems seem to have a higher incidence in the Friesian breed compared to other breeds and this raises suspicions that these clinical entities may have a genetic basis.

Introduction

This article accompanies the report by Viljoen et al. (2012) and reviews the clinical entities that seem to occur in Friesian horses more often than in horses of other breeds, and discusses whether the vascular ring anomaly described in the report was ‘the chicken or the egg’.

Viljoen et al. (2012) expressed the opinion that the primary cause of the megaesophagus in their 11-year-old Friesian gelding was a vascular ring anomaly and they illustrate this very nicely with post mortem macroscopic illustrations. Oesophageal obstruction in Friesian horses, however, is in most cases the result of the development of megaesophagus (Boerma and Sloet van Oldruitenborgh-Oosterbaan 2008; Van der Kolk et al. 2011). The question is ‘was the trotting sound heard behind these authors really caused by a zebra, or was it nevertheless a horse’?

Clinical, possibly genetic disorders in Friesian horses

A variety of clinical problems occur in many breeds but some seem to have a remarkably high incidence in Friesian horses. In the Netherlands, around 7% of the horse population is the Friesian breed and, during the period 1995–2003, 7% of the caseload of the university clinic were Friesians (Van Vliet and Back 2006). When thus overall considerably more than 7% of a disease is prevalent in Friesian horses, suspicion is raised that genetics may play an important role in the prevalence of that particular disease (Van Vliet and Back 2006; Orr et al. 2010).

Developmental disorders

Within the Friesian horse population, dwarfism (Figs 1 and 2) has been recognised for many years. However, more detailed information became available in 2008, showing that growth retardation occurs mainly in the limbs (25% shorter than normal) and ribs (Back et al. 2008). The bodyweight of dwarfs is about 50% lower than that of aged-matched normal Friesian foals (Back et al. 2008). Dwarfs grow after birth, albeit some parts of the body at a slower rate and thus mature dwarfs show a typical phenotype: normal, but relatively larger head conformation, a broader chest with narrowing at the costochondral junction, a disproportionally long back, abnormally short limbs, hyperextension of the fetlocks and narrow long-toed hooves (Back et al. 2008).

Fig 1: A 7-week-old Friesian foal with dwarfism.
Hydrocephalus is an uncommon disorder (Fig 3) in horses but the Friesian horse has shown a higher incidence than other breeds with an estimated incidence rate of approximately 2.5 affected foals per 1000 births (Sipma et al. 2011). A dyschondrodysplasia could be the cause, leading to malformation of the os petrosum and thus to a distorted, nonfunctional jugular foramen; this would lead to internal jugular vein compression, disturbing CSF drainage and enhancing its accumulation.

Immune-mediated disorders

Retained placenta is often defined as a failure to expel all fetal membranes within 3 h of delivery. In the general horse population, the incidence of retained placenta is estimated to be 2–10% (Vandeplasche et al. 1971; Provencher et al. 1988). However, in Friesian mares, the incidence of retained placenta after normal foaling is much higher (54%) (Sevinga et al. 2004a). Sevinga and co-authors showed that there are indications that this high rate of retained placenta is at least partly a result of inbreeding (Sevinga et al. 2004b).

Insect bite hypersensitivity (Figs 4 and 5), involving type I and IV hypersensitivity reactions, is recognised in The Netherlands and occurs in about 18% of the Friesian horse population (Van Grevenhof et al. 2007). This incidence is much higher than in most other breeds, even in the same country. The incidence of insect bite hypersensitivity in The Netherlands in Shetland ponies studied in the same period was about 8% (Van Grevenhof et al. 2007). Further studies to elucidate the genetic background have shown that insect bite hypersensitivity is a familial disease with a polygenic background (Van Grevenhof et al. 2007; Schurink et al. 2009).

Neonatal isoerythrolysis is an uncommon disease in foals (Fig 6), based on maternal alloantibodies related to blood group factors. In 3 Friesian foals, an unusual form of neonatal isoerythrolysis was demonstrated where the mares had haemolytic alloantibodies not attributable to a
specific antigenic group (De Graaf-Roelfsema et al. 2007). Further research is necessary to evaluate whether it was a coincidence that all 3 cases were Friesian foals or whether this is another specific Friesian breed problem.

Soft tissue disorders

Megaoesophagus is a chronic dilatation and atony of the body of the oesophagus. The atony results in accumulation of food and saliva in the dilated oesophagus. This often results in obstruction/impaction of the oesophagus and subsequent regurgitation (Figs 7–9) and, in some cases, aspiration pneumonia (Boerma and Sloet van Oldruitenborgh-Oosterbaan 2008). At endoscopy of the trachea, a dorsoventral compression may occur as result of compression by the very enlarged oesophagus (Gehlen et al. 2005). Megaoesophagus is mainly diagnosed in Friesian horses between 1 week and 19 years of age (Boerma and Sloet van Oldruitenborgh-Oosterbaan 2008) and is presumed to be a genetically determined neuromuscular disorder (Van der Kolk et al. 2011).

Other abnormalities of the digestive tract seem to occur more in Friesian horses compared to other breeds. Knowles and Mair (2009) described an unusual case of colonic volvulus associated with multiple mesenteric abnormalities. The colt was subjected to euthanasia due to the extent of the intestinal damage and likelihood of recurrence. The authors speculated that the anomalies may have been of genetic aetiology associated with a restricted gene pool.

Verrucous pastern dermatopathy or chronic proliferating lymphangitis (CPL) is a well recognised chronic pastern dermatitis with hyperkeratotic, hyperplastic nodules that may become ulcerated and painful in the course of the disease (Fig 10). The entity has several names including ‘greasy heel syndrome’, ‘condylomatous pastern dermatitis’, ‘granulomatous pastern dermatitis’, ‘grapes’ and ‘chronic progressive lymphoedema’. Heavy cold-blooded horses with long feathered fetlocks such as the Belgian, Dutch and German draught horse breeds are overrepresented. In The Netherlands, it is also a very common problem in the Friesian horse. Although a genetic background is suspected, this has not yet been proven in detail (De Cock et al. 2009).

Ruptures in the aortic arch near the ligamentum arteriosum are uncommon (Van der Linde-Sipman et al. 1985; Fig 11). Recently, 31 cases were described in Friesian horses, all showing a persistently high heart rate.
(60–80 beats/min) with a bounding arterial pulse (Ploeg et al. 2011). Rupture of the aorta may lead to an aortic-pulmonary fistula causing left to right shunting of blood and/or rupture of the aorta causes a blood tamponade in the mediastinum that may rupture and lead to the immediate death of the patient (Fig 11).

Although there is no evidence available, it is the clinical impression that all kinds of hernia and cryptorchids seem to occur more often in Friesian horses (Figs 12 and 13) than in other breeds. However, there is only limited literature available, including descriptions of umbilical hernias (Weigand et al. 1997; Voermans et al. 2004), diaphragmatic, inguinal and ventral abdominal hernias (Hendriks et al. 2007).

Orthopaedic disorders

Tendon/ligament laxity has been proven to be different in Friesian horses as there is a significant difference in tendon properties between dwarf Friesians and normal ponies leading to load failure of the stay apparatus (Gussekloo et al. 2011). In contrast, normal Friesian horses had properties in between dwarfs and ponies with their tendons appearing more elastic than has previously been reported in Thoroughbreds.

Tendon/ligament laxity can lead to a more extended fetlock position, resulting in a more horizontal position of
the pastern bone, thereby facilitating the development of a processus extensorius fracture (Fig 14) (Viitanen et al. 2003) and more collateral ligament laxity, thereby facilitating ossification of the hoof cartilages (Fig 15) (Dakin et al. 2009). On the other hand, the concurrent more upright foot and convex navicular bone shape might protect Friesian horses from the development of navicular disease (Dik et al. 2001).

Last, but not least, hyperextension of the fetlock together with poor hind limb propulsion and hyperrotation of the hind foot may facilitate desmits of the ligamentum intersesamoideum due to interbone ligamental laxity (Voermans et al. 2009).

Discussion

Many of the problems described above occur mainly or predominantly in the Friesian horse and may be related to the relatively small gene pool of the Friesian horse and/or the high reproduction rate when this breed became very popular in the eighties.

It may be that several of these disorders are related to one common feature which has been intensively selected to obtain the breed specific postural characteristics: a baroque type appearance with a vertical neck and a hyperflexing and hyperelastic ‘dancing’ locomotor pattern (Halper et al. 2006). In particular, the latter fits with the suggestion that many of the problems are collagen-related and a systemic collagen-linked abnormality plays an important role. This supposition is supported by a recent study of tendon properties. It has been shown that there is a significant difference in tendon properties between dwarf Friesians and normal ponies leading to load failure of the stay apparatus (Gussekloo et al. 2011); normal Friesian horses had properties in between the dwarfs and ponies and tendons were more elastic than reported in Thoroughbreds. Another indication of a possible abnormality of collagen is demonstrated by the predisposition to rupture of the aortic wall: H&E staining of these lesions revealed significant presence of degeneration, collagen fibre fragmentation, necrosis and inflammation (Ploeg et al. 2011). Abnormal collagen formation together with aberrant elastin properties has previously been demonstrated in Belgian draught horses with verrucous pastern dermatitis (De Cock et al. 2009).

With regard to the horse described by Viljoen et al. (2012), it may be that the trotting sound nevertheless was from a horse and not from a zebra. Previously described vascular ring anomalies in horses have mainly occurred at a young age (Clabough et al. 1991; Smith 2004), while signs of a megaoesophagus can be seen in foals or adults up to the age of 19 years (Boerma and Sloet van
Oldruitenborgh-Oosterbaan 2008). Considering the fact that the problem in the case of Viljoen et al. (2012) occurred at the age of 11 years, it is possible that the developing megaoesophagus was the primary problem and only when the oesophagus became enlarged did the vascular ring anomaly become evident.

Authors’ declaration of interests

No conflicts of interest have been declared.

References

